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Abstract: Deep neural networks (DNNs) are a powerful artificial neural network (ANN) using 
multiple hidden layers. In recent years, it has gained considerable attention in the fields of speech 
conversion and image recognition, because of their superior the predictive properties of the 
algorithm include robustness to overfitting. However, their application in algorithmic trading has 
not been studied before, partly because of their computational complexity. Application. Specifically, 
we describe the configuration and training methods, and then demonstrate their application of a 
reverse test of a simple trading strategy at 43-minute intervals on 43 different commodities and 
foreign exchange futures. All results are generated using the C++ implementation on the Intel Xeon 
Phi coprocessor (11.4 times faster than the serial version) and the Python policy back testing 
environment, both of which are open source code written by the author. 

1. Introduction 
Many challenges faced by financial econometrics methods include non-stationary, nonlinear or 

noise of time series. Although artificial neural network (ANN) has been applied in time series 
method, their over fitting tendency, convergence problem and implementation difficulty have 
aroused people's attention. Moreover, they have deviated from the foundation of financial 
econometrics. Alienated the financial econometric research community and financial practitioners 
[1]. 

However, electronic trading companies employ computer scientists and mathematicians, who not 
only regard artificial neural network as black box, but also regard it as a nonparametric modeling 
method based on minimization of entropy function. The progress of modern computer architecture 
has promoted the recent revival of this method. Deep neural network (DNN) is an artificial neural 
network with multiple hidden units between input layer and output layer. Because of its successful 
application in image classification and speech recognition, they have been popularized in the 
artificial intelligence community. This area is known as "deep learning" [2]. 

In this article, we will use DNN to partially solve some of the historical defects of ANN. In 
particular, we have modeled the complex nonlinear relationship between independent variables and 
dependent variables, reducing the trend of over fitting. In order to achieve this, we will use the 
advanced technology of low cost multi-core accelerator platform to train and adjust the parameters 
of our model [3]. 

For financial forecasting, especially in multivariate prediction analysis, the feed forward 
topology has attracted more attention and will become the method used in this paper. Compared 
with other training models, back propagation and gradient descent are the preferred methods for 
training these structures, because they are easy to implement and converge easily to better local 
optimum values. However, these methods may be computationally expensive. Especially when used 
in training DNN. 

DNN has many training parameters that need to be considered, such as size (number of layers 
and number of cells per layer), learning rate and initial weight. Because of the cost of time and 
computational resources, it is not feasible to search the optimal parameters in parameter space. We 

2020 3rd International Conference on Global Economy, Finance and Humanities Research (GEFHR 2020)

Published by CSP © 2020 the Authors 173



will use mini batching (one time to calculate the gradient of several training samples instead of a 
single sample) as a common accelerated calculation method. The back propagation algorithm is 
represented as a form of fast performance that can be implemented on the Intel Xeon Phi 
coprocessor. Shekhar and Amin describe the general hardware optimization implementation of the 
back propagation algorithm, but our method is tailored for the Intel Xeon Phi coprocessor. 

The main contribution of this paper is to describe the application of deep neural network in 
financial time series data, so as to classify the motion direction of financial market. Traditionally, 
researchers have repeatedly tested several signals, and trained a level based method for each 
instrument, such as vector autoregression. Recently, some scholars have provided evidence that the 
classification method is superior to the level based method in predicting stock trend and maximizing 
transaction returns. 

In the following part, we will introduce the back propagation learning algorithm, and use the 
minimum batch to represent the most intensive equation as matrix. Once it is expressed in matrix 
form, you can use the hardware optimized numerical linear algebra routines to implement the 
efficient mapping of the algorithm to the Intel Xeon Phi coprocessor. The third section introduces 
the preparation for data training for DNN. The fourth section describes the implementation of DNN. 
Then, the fifth section gives the results of measuring the performance of DNN. Finally, in the sixth 
quarter, we use the forward walking method to demonstrate the application of DNNs in reverse 
testing. It also provides the performance results of a simple buy hold sell strategy. 

2. Deep Neural Network Classifier 
Let's start with mathematics matriculation. Set D to represent M features and historical data sets 

of N observations. We have drawn N subsets of training D Train⊂D and Ntest observed by training 
subsets. 

The first n(eigenvector) is represented as x n∈D Train . In ANN, every element of the vector 
becomes a node in the input layer. As shown in the figure below, when each observation has 7 input 
variables (characteristics), every node in the fully connected feed forward network is connected to 
each node in the next layer. Although it is not shown in the graph. However, the weight WLij is 
associated with each edge between the nodes in the previous layer and the j node in the current layer 
l. 

 
Figure1 Neural Network 

Figure 1 an illustrative example of a feed forward neural network with two hidden layers, seven 
features and two output states. Deep learning network classifier usually has more layers, uses a 
large number of features and several output states or classes. The goal of learning is to find the 
weight of each edge that minimizes the out of sample error. 

In order to find the best weight w= {w (L)} l=1 to L between nodes in the fully connected 
feed-forward network with l layer, we seek the minimized form of cross entropy function: 

   (1) 
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For clarity, we removed the subscript n. binary target y and output variables. ŷ  For each 
symbol, there are 1 to K codes, where yk{0,1}, so that each output state associated with symbols 
can be interpreted as a probability weighting. In order to ensure the analytic gradient function under 
cross entropy error measurement, and to ensure the probability of each state is 1, the output layer is 
activated by the following form of softmax function. 

(2) 
For the fully connected feed forward network, s (L)j is the weighted sum of the output of the 

previous layer L-1, which is derived from the node j connected to the layer L. 

    (3) 
For the fully connected feed forward network, s (L)j is the weighted sum of the output of the 

previous layer L-1, which is derived from the node j connected to the layer L. 

 
The recursive relation of back propagation using conjugate gradient is: 

 
So, in conclusion, given any observation as input, the recurrent feed forward network can be 

used to predict the probability of each symbol's output state (or category) recursively by formula 3. 
Now describe how the network is trained. 

Stochastic gradient descent 
We now review the back propagation learning algorithm based on the stochastic gradient descent 

(SGD) algorithm. Although SGD is only first-order, SGD can be used as an optimization method 
for DNNs because of the highly non convex form of utility functions. 

After random sampling of the observed I, the SGD algorithm updates the first level parameter 
vector w (l) with the following parameters 

To illustrate the results of level L: 

 
Gamma is the learning rate. Algorithm 1 gives a high-level description of the sequential version 

of the SGD algorithm. Note that for the sake of simple description, we avoid some nuances of 
implementation. 

 
Algorithm1 Stochastic gradient descent 
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3. Data 
Our historical data set contains the 5 minute median price for the 43 commodity exchanges and 

the foreign exchange futures between March 31, 1991 and September 30, 2014. We used the data of 
the last 15 years, because the poor liquidity of some symbols in the previous period resulted in no 
price fluctuation in the long period of 5 minutes. By normalizing each characteristic by subtracting 
the mean and dividing the standard deviation, the training set was set at 25.000 continuous 
observations are made, and the test set consists of the next 12500 observations. As mentioned in 
section sixth, these collections start from the liquid observation period and roll forward 10 times 
with 1000 observations, until the last 37500 observations from March 31, 2005 to the end of the 
data set. 

The whole training dataset is composed of a set of characteristic training sets for each symbol. 
The training set of each symbol is composed of the price difference and engineering characteristics. 
It includes the lag price difference from 1 to 100, the average price of the window size from 5 to 
100, and the pairwise correlation between the returns and returns of all other symbols. The whole 
training set contains 9895 characteristics. The motivation of containing these functions in the model 
is to capture the cooperative movement between memory and symbols in historical data. 

4. Experimental Scheme 
Our network architecture contains five learning fully connected layers. The first layer of the four 

hidden layers contains 1000 neurons, and each layer is reduced by 100. The last layer contains 129 
output neurons. Each symbol of the -43 futures contract has three values. The result containing a 
large number of features and multiple hidden layers is a total of 12174500 weights. 

The weights are initialized by using the Intel MKL VSL random number generator using the 
routines of Mersenne Twistor (MT19937). The inverse Gauss cumulative distribution function with 
zero mean and standard deviation 0.01 is used to transform the uniform random number to generate 
Gauss random numbers. We use constant 1 to initialize the neuron bias in the hidden layer. 

We use the same learning rate for all layers. The learning rate is adjusted according to heuristics. 
The heuristic is described in the following algorithm 2, and is similar to the method adopted by 
Krizhevsky et al. We use cross entropy instead of validation error. We scanned the parameter space 
of learning rate from [0.1, 1] to 0.1 increments. If the cross entropy between epoch generations did 
not decrease, we further divide the learning rate gamma by 2. In the algorithm 2, and the subset of 
training sets for each epoch is defined. 

 
Algorithm 2 Deep learning method 

As mentioned earlier, the small batch formula of the algorithm contributes to efficient parallel 
implementation. Dixon et al. Described its details and timing. Taking into account the time of error 
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measurement on the test set, the total time to train DNN on Intel Xeon Phi using the above data is 
about 8 hours, so retraining is needed every day. Training can be run as an overnight batch 
operation. This is 11.4 times faster than the serial version of the running algorithm. 

5. Experimental Results 

 
Figure2 classification accuracy of DNN applied to 43 CME commodities and forex futures. 

Figure 2 this graph shows the classification accuracy of DNN applied to 43 kinds of CME 
commodities and foreign currency futures. Each symbol is represented by the vertical bar of the box 
and the beard. The box represents the area between the upper and lower four quantiles of the sample 
distribution of the classification accuracy. The median of the sample distribution of the 
classification accuracy is expressed by a red horizontal line. 

This section introduces the DNN reverse testing of simple algorithm trading strategies. The 
purpose is to link the accuracy of classification with the measurement of strategic performance 
rather than providing detailed exploration of trading strategies or their performance. We calculate 
the classification accuracy of the mobile test window for each 130 days. Repeat this process to give 
a set of ten classification errors. Figure2 shows the block diagram of the DNN classification 
accuracy of all 43 CME commodities and foreign exchange futures. Each symbol is represented by 
a box and a vertical bar. The box represents the area between the upper and lower four quantiles of 
the sample distribution of 8 classification accuracies.The median is represented by a red horizontal 
line. The following Figure3 shows the average classification accuracy distribution of 10 DNN 
samples of 43 CME commodities and forex futures. The accuracy is about 0.35 greater than that of 
random selection. 

 
Figure 3 Average classification accuracy distribution of DNN applied to 43 CME commodities and 

foreign exchange  
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Table1 shows the top five mean samples with the highest average sample size in ten forward 
walking experiments. It also shows the F1 score ("harmonic average"). It is considered a more 
robust performance measure, because its sensitivity to class imbalance is lower than that of 
classification accuracy. It also provides the average sample classification accuracy and the average 
and standard deviation of F1 scores for 43 futures. 

Table 1 In the ten forward walking experiments, the first five instruments with the highest 
classification rate were the highest. 

 
Note that in the ten experiments, the average performance of the five tools with the worst 

performance is no better than that of white noise, or even 10 times that of white noise. 

6. Strategy Backdating Test 
So far, the prediction characteristics of deep neural networks have been considered. Using the 

historical data of commodity futures every 5 minutes from March 31, 1991 to September 30, 2014, 
this section describes the application of the forward walking optimization method in the simple 
return strategy. 

Following the forward walking optimization method described in the previous literature, we 
choose 25000 initial windows of 5 minute observation period or about 260 days (slightly more than 
a year) to train all models using all symbol data and their designed time series. The range of 
scanning learning rate is to find out the highest classification rate of the model out of sample 
(persisting) set of the best sample out prediction rate.The collection consists of 12500 continuous 
and recent observations. 

Using the optimized model, the expected profit and loss of the trading strategy is evaluated in the 
sample period consisting of 12500 continuous 5 minute observation periods or about 130 days. 
Even if all symbols are trained together with a DNN model, cumulative p&l is calculated 
independently for each symbol. As shown in Figure4, the training window is moved forward by 
1000 observation periods. We repeat the sample error analysis and policy performance 
measurement in 10 windows. 

 
Figure 4 An example of the forward stepping optimization method for policy re examination is 

given. 
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6.1 Example of Trading Strategy 
In order to demonstrate the application of DNNs in algorithmic trading, a simple buy hold sell 

intraday trading strategy is selected according to the possible increase, neutral or fall of the price of 
the tool in the next time interval. For simplicity, the strategy only orders a number of market orders. 
If the label is 1, the strategy closes the short position and takes the multi position; if the label is zero, 
then the position is maintained. If the label is -1, the multi head position is closed and the short 
position is taken. The following simplified assumptions are made when calculating the accumulated 
unrealized gains and losses. 

(1) The account was opened for $100 thousand. 
(2) Sufficient cash is available to maintain brokerage account margin through profit or other 

means. 
(3) There is no limit to the shortest or longest holding period, and the position can be spent 

overnight; 
(4) Transaction costs are ignored. 
(5) No operational risk measures have been deployed, such as stop loss orders. 
(6) The market always has enough liquidity, and the market orders will be filled immediately at 

the intermediate price of 5 minutes, so the slip effect is ignored. 
(7) The 1 batch of market orders every 5 minutes has no significant impact on the market, so the 

forecast does not take account of the constraints on the execution of orders. 
These assumptions, especially those about transaction execution and no real time simulation in 

the environment of back test, are of course not enough to prove the Alfa generating ability of DNN 
based strategies, but they can serve as the starting point for the commercial application of this 
research. Figure 5 shows that the strategy is applied to the sample distribution of the time average 
daily returns of commodity futures and foreign exchange futures in the first 43 months of the 43 
CME, respectively. 

 
Figure 5 Box diagram of sample distribution for average daily income within 130 days 

 
Figure 6 Accumulative unrealized net dollar profit of a simple strategy 
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In order to quantify the impact of information loss, the profit under the full prediction 
information is expressed as "perfect foresight" (green line), and the profit predicted by DNN is 
expressed as "forecast" (blue line). This chart shows the 130 day trading period of PL futures in 
recent months. 

Figure 6 compares the cumulative unrealized net profit of the strategy in the case of perfect 
prediction information ("perfect foresight") and the use of DNN prediction ("prediction"). This 
chart shows the 130 day trading period of PL futures in recent months. 

 
Figure7 A block diagram of the maximum descending value of a simple strategy. 

 
Figure 8 SHARP ratio distribution box diagram 

Only the five best futures contracts are considered. Simple trading strategies mentioned above. 
Keywords: pl: platinum, nq: e- Mini Nasdaq 100 futures, ad: Australian dollar, bp: sterling, es: e- 
Mini S & P 500 futures. 

Figure7 shows a block diagram of the maximum descending value of a simple strategy. The 
strategy applies ten forward walking experiments for each symbol. Figure8 shows the range of the 
annual five SHARP futures contracts measured in each mobile period of 12500 observations. 
Table2 also supplements this figure, which shows that in the ten forward walking experiments, the 
first five instruments with the highest average sample size of the annualized SHARP ratio indicate 
the standard deviation of the ten experiments. The paper also gives the sample mean and standard 
deviation of the capacity ratio (n=130) under the assumption of normal return. 

Table 2 The ten best tools to optimize the average age and shape ratio are the top five tools. 
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The values in brackets represent the standard deviations of the ten experiments. Under the 
assumption that the yield is a normal distribution, the mean and standard deviation of the capacity 
ratio are also given. 

Table3 Initial margin, maintenance margin and contract size specified by CME 

 
Table 3 this table lists the initial margin, maintenance margin and contract size designated by the 

Chicago Mercantile Exchange to calculate the accumulated profit and loss and the strategic 
performance of the five futures positions with the best performance. 

Table 4 shows the correlation between the strategic daily gains of the five most mobile tools in 
the 43 CME futures and their related ETF benchmarks. These values represent the aggregate 
statistical information of the correlation in ten experiments. When the average of ten experiments is 
over, the correlation between the strategic return and the benchmark return is very weak, and the 
absolute value of correlation is below 0.5 in any given experiment. 
Table 4 The correlation between the daily strategic return and the relevant ETF benchmark of the 43 

most mobile CME instruments in the five futures markets 

 
These values represent the aggregate statistics of correlation in ten experiments. The key is: NQ: 

E-mini Nasdaq 100 futures, DJ: DJIA (10 US dollars) futures, ES: E-mini Standard & Poor's 500 
futures, YM: E-mini Dow Jones index (5 U.S. dollars) futures, EC: Euro euro futures. 

7. Conclusion 
DNNs's layout and training. Deep neural network (DNNs) is a powerful artificial neural network 

(ANN) using multiple hidden layers. In this article, we describe its implementation. We observed 
the historical data set of the 5 minute median price of listed futures prices and other lags and filters 
for several Chicago commodity exchanges (CME). If training is done across several markets on the 
tag data, DNN as a classifier has substantial predictive power. We further demonstrate the 
application of DNNs in reverse testing of a simple trading strategy. The accuracy of prediction and 
its relationship with strategic profitability are proved. All the results in this article are generated by 
C++ in the Intel Xeon Phi coprocessor (11.4 times faster than the serial version) and the Python 
strategy back test environment. These two environments are the source code written by the author. 
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